首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Carbon nanotubes accelerate methane production in pure cultures of methanogens and in a syntrophic coculture
Authors:Andreia F Salvador  Gilberto Martins  Manuel Melle‐Franco  Ricardo Serpa  Alfons JM Stams  Ana J Cavaleiro  M Alcina Pereira  M Madalena Alves
Institution:1. Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga, 4710‐057, Portugal;2. Ciceco ‐ Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, Aveiro, 3810‐193, Portugal;3. Laboratory of Microbiology, Wageningen University, Wageningen, 6708 WE The Netherlands
Abstract:Carbon materials have been reported to facilitate direct interspecies electron transfer (DIET) between bacteria and methanogens improving methane production in anaerobic processes. In this work, the effect of increasing concentrations of carbon nanotubes (CNT) on the activity of pure cultures of methanogens and on typical fatty acid‐degrading syntrophic methanogenic coculture was evaluated. CNT affected methane production by methanogenic cultures, although acceleration was higher for hydrogenotrophic methanogens than for acetoclastic methanogens or syntrophic coculture. Interestingly, the initial methane production rate (IMPR) by Methanobacterium formicicum cultures increased 17 times with 5 g·L?1 CNT. Butyrate conversion to methane by Syntrophomonas wolfei and Methanospirillum hungatei was enhanced (~1.5 times) in the presence of CNT (5 g·L?1), but indications of DIET were not obtained. Increasing CNT concentrations resulted in more negative redox potentials in the anaerobic microcosms. Remarkably, without a reducing agent but in the presence of CNT, the IMPR was higher than in incubations with reducing agent. No growth was observed without reducing agent and without CNT. This finding is important to re‐frame discussions and re‐interpret data on the role of conductive materials as mediators of DIET in anaerobic communities. It also opens new challenges to improve methane production in engineered methanogenic processes.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号