首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Plasmid-mediated uptake and metabolism of sucrose by Escherichia coli K-12.
Authors:K Schmid  M Schupfner  and R Schmitt
Abstract:The conjugative plasmid pUR400 determines tetracycline resistance and enables cells of Escherichia coli K-12 to utilize sucrose as the sole carbon source. Three types of mutants affecting sucrose metabolism were derived from pUR400. One type lacked a specific transport system (srcA); another lacked sucrose-6-phosphate hydrolase (scrB); and the third, a regulatory mutant, expressed both of these functions constitutively (scrR). In a strain harboring pUR400, both transport and sucrose-6-phosphate hydrolase were inducible by fructose, sucrose, and raffinose; if a scrB mutant was used, fructose was the only inducer. These data suggested that fructose or a derivative acted as an endogenous inducer. Sucrose transport and sucrose-6-phosphate hydrolase were subject to catabolite repression; these two functions were not expressed in an E. coli host (of pUR400) deficient in the adenosine 3-,5'-phosphate receptor protein. Sucrose uptake (apparent Km = 10 microM) was dependent on the scrA gene product and on the phosphoenolpyruvate-dependent sugar:phosphotransferase system (PTS) of the host. The product of sucrose uptake (via group translocation) was identified as sucrose-6-phosphate, phosphorylated at C6 of the glucose moiety. Intracellular sucrose-6-phosphate hydrolase catalyzed the hydrolysis of sucrose-6-phosphate (Km = 0.17 mM), sucrose (Km = 60 mM), and raffinose (Km = 150 mM). The active enzyme was shown to be a dimer of Mr 110,000.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号