首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Size-related auto-fragment production and carbohydrate storage in auto-fragment of <Emphasis Type="Italic">Myriophyllum spicatum</Emphasis> L. in response to sediment nutrient and plant density
Authors:Dong Xie  Dan Yu
Institution:(1) The National Field Station of Freshwater Ecosystem of Liangzi Lake, College of Life Science, Wuhan University, Wuhan, 430072, People’s Republic of China;
Abstract:Size-related asexual reproduction of submersed macrophytes is still poorly understood. Here, we investigate how size-related auto-fragmentation in Myriophyllum spicatum L. responds to sediment nutrients and plant density. An experiment was carried out with sediments containing two different nutrient levels and with two levels of plant density. The results show that sediment nutrients and plant density brought about a strong dependency of auto-fragment production and the amount of total non-structural carbohydrate (TNC) storage in auto-fragments on individual plant size (total plant biomass). However, these two factors acted differently on size dependency. Sediment nutrients positively affected auto-fragment production and the amount of TNC in auto-fragments of M. spicatum. High concentrations of sediment nutrients significantly increased these two traits in absolute value and the value relative to plant size. Although the auto-fragment biomass and the amount of TNC in auto-fragments did not differ between density treatments when plant size was considered, the absolute values of these two traits were much larger in the low plant density treatment than in the high plant density treatment, which suggested an indirect negative effect of plant density on the auto-fragmentation of M. spicatum. In addition, higher percentages of large auto-fragments (>100 mg) were produced by plants that grew in nutrient poor sediment and low plant density environment than plants in nutrient rich sediment and high plant density environment. These results do not solely highlight a size-dependent effect, but also a size-independent effect of auto-fragment production and the amount of TNC in auto-fragments of M. spicatum. Furthermore, such size-independent effects can be explained by the significant biomass partitioning differences and the similar TNC-concentrations in auto-fragments under different environmental conditions.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号