首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Ubiquitination of S4-RNase by S-LOCUS F-BOX LIKE2 Contributes to Self-Compatibility of Sweet Cherry ‘Lapins’
Authors:Yang Li  Xuwei Duan  Chuanbao Wu  Jie Yu  Chunsheng Liu  Jing Wang  Xiaoming Zhang  Guohua Yan  Feng Jiang  Tianzhong Li  Kaichun Zhang  Wei Li
Institution:aLaboratory of Fruit Cell and Molecular Breeding, China Agricultural University, 100193 Beijing, China;bInstitute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, 100097 Beijing, China
Abstract:Recent studies have shown that loss of pollen-S function in S4′ pollen from sweet cherry (Prunus avium) is associated with a mutation in an S haplotype-specific F-box4 (SFB4) gene. However, how this mutation leads to self-compatibility is unclear. Here, we examined this mechanism by analyzing several self-compatible sweet cherry varieties. We determined that mutated SFB4 (SFB4ʹ) in S4′ pollen (pollen harboring the SFB4ʹ gene) is approximately 6 kD shorter than wild-type SFB4 due to a premature termination caused by a four-nucleotide deletion. SFB4′ did not interact with S-RNase. However, a protein in S4′ pollen ubiquitinated S-RNase, resulting in its degradation via the 26S proteasome pathway, indicating that factors in S4′ pollen other than SFB4 participate in S-RNase recognition and degradation. To identify these factors, we used S4-RNase as a bait to screen S4′ pollen proteins. Our screen identified the protein encoded by S4-SLFL2, a low-polymorphic gene that is closely linked to the S-locus. Further investigations indicate that SLFL2 ubiquitinates S-RNase, leading to its degradation. Subcellular localization analysis showed that SFB4 is primarily localized to the pollen tube tip, whereas SLFL2 is not. When S4-SLFL2 expression was suppressed by antisense oligonucleotide treatment in wild-type pollen tubes, pollen still had the capacity to ubiquitinate S-RNase; however, this ubiquitin-labeled S-RNase was not degraded via the 26S proteasome pathway, suggesting that SFB4 does not participate in the degradation of S-RNase. When SFB4 loses its function, S4-SLFL2 might mediate the ubiquitination and degradation of S-RNase, which is consistent with the self-compatibility of S4′ pollen.

In sweet cherry (Prunus avium), self-incompatibility is mainly controlled by the S-locus, which is located at the end of chromosome 6 (Akagi et al., 2016; Shirasawa et al., 2017). Although the vast majority of sweet cherry varieties show self-incompatibility, some self-compatible varieties have been identified, most of which resulted from the use of x-ray mutagenesis and continuous cross-breeding (Ushijima et al., 2004; Sonneveld et al., 2005). At present, naturally occurring self-compatible varieties are rare (Marchese et al., 2007; Wünsch et al., 2010; Ono et al., 2018). X-ray-induced mutations that have given rise to self-compatibility include a 4-bp deletion (TTAT) in the gene encoding an SFB4′ (S-locus F-box 4′) protein, located in the S-locus and regarded as the dominant pollen factor in self-incompatibility. This mutation is present in the first identified self-compatible sweet cherry variety, ‘Stellar’, as well as in a series of its self-compatible descendants, including ‘Lapins’, ‘Yanyang’, and ‘Sweet heart’ (Lapins, 1971; Ushijima et al., 2004). Deletion of SFB3 and a large fragment insertion in SFB5 have also been identified in other self-compatible sweet cherry varieties (Sonneveld et al., 2005; Marchese et al., 2007). Additionally, a mutation not linked to the S-locus (linked instead to the M-locus) could also cause self-compatibility in sweet cherry and closely related species such as apricot (Prunus armeniaca; Wünsch et al., 2010; Zuriaga et al., 2013; Muñoz-Sanz et al., 2017; Ono et al., 2018). Much of the self-compatibility in Prunus species seems to be closely linked to mutation of SFB in the S-locus (Zhu et al., 2004; Muñoz-Espinoza et al., 2017); however, the mechanism of how this mutation of SFB causes self-compatibility is unknown.The gene composition of the S-locus in sweet cherry differs from that of other gametophytic self-incompatible species, such as apple (Malus domestica), pear (Pyrus spp.), and petunia (Petunia spp.). In sweet cherry, in addition to a single S-RNase gene, the S-locus contains one SFB gene, which has a high level of allelic polymorphism, and three SLFL (S-locus F-box-like) genes with low levels of, or no, allelic polymorphism (Ushijima et al., 2004; Matsumoto et al., 2008). By contrast, the apple, pear, and petunia S-locus usually contains one S-RNase and 16 to 20 F-box genes (Kakui et al., 2011; Okada et al., 2011, 2013; Minamikawa et al., 2014; Williams et al., 2014a; Yuan et al., 2014; Kubo et al., 2015; Pratas et al., 2018). The F-box gene, named SFBB (S-locus F-box brother) in apple and pear and SLF (S-locus F-box) in petunia, exhibits higher sequence similarity with SLFL than with SFB from sweet cherry (Matsumoto et al., 2008; Tao and Iezzoni, 2010). The protein encoded by SLF in the petunia S-locus is thought to be part of an SCF (Skp, Cullin, F-box)-containing complex that recognizes nonself S-RNase and degrades it through the ubiquitin pathway (Kubo et al., 2010; Zhao et al., 2010; Chen et al., 2012; Entani et al., 2014; Li et al., 2014, 2016, 2017; Sun et al., 2018). In sweet cherry, a number of reports have described the expression and protein interactions of SFB, SLFL, Skp1, and Cullin (Ushijima et al., 2004; Matsumoto et al., 2012); however, only a few reports have examined the relationship between SFB/SLFL and S-RNase (Matsumoto and Tao, 2016, 2019), and none has investigated whether the SFB/SLFL proteins participate in the ubiquitin labeling of S-RNase.Although the function of SFB4 and SLFL in self-compatibility is unknown, the observation that S4′ pollen tubes grow in sweet cherry pistils that harbor the same S alleles led us to speculate that S4′ pollen might inhibit the toxicity of self S-RNase. In petunia, the results of several studies have suggested that pollen tubes inhibit self S-RNase when an SLF gene from another S-locus haplotype is expressed (Sijacic et al., 2004; Kubo et al., 2010; Williams et al., 2014b; Sun et al., 2018). For example, when SLF2 from the S7 haplotype is heterologously expressed in pollen harboring the S9 or S11 haplotype, the S9 or S11 pollen acquire the capacity to inhibit self S-RNase and break down self-incompatibility (Kubo et al., 2010). The SLF2 protein in petunia has been proposed to ubiquitinate S9-RNase and S11-RNase and lead to its degradation through the 26S proteasome pathway (Entani et al., 2014). If SFB/SLFL in sweet cherry have a similar function, the S4′ pollen would not be expected to inhibit self S4-RNase, prompting the suggestion that the functions of SFB/SLFL in sweet cherry and SLF in petunia vary (Tao and Iezzoni, 2010; Matsumoto et al., 2012).In this study, we used sweet cherry to investigate how S4′ pollen inhibits S-RNase and causes self-compatibility, focusing on the question of whether the SFB/SLFL protein can ubiquitinate S-RNase, resulting in its degradation.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号