首页 | 本学科首页   官方微博 | 高级检索  
     


Probability rule for chiral recognition
Authors:Kafri Ran  Lancet Doron
Affiliation:Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel.
Abstract:Molecular Chirality is of central interest in biological studies because enantiomeric compounds, while indistinguishable by most inanimate systems, show profoundly different properties in biochemical environments. Enantioselective separation methods, based on the differential recognition of two optical isomers by a chiral selector, have been amply documented. Also, great effort has been directed towards a theoretical understanding of the fundamental mechanisms underlying the chiral recognition process. Here we report a comprehensive data examination of enantio separation measurements for over 72000 chiral selector-select and pairs from the chiral selection compendium CHIRBASE. The distribution of alpha = k'(D)/k'(L) values was found to follow a power law, equivalent to an exponential decay for chiral differential free energies. This observation is experimentally relevant in terms of the number of different individual or combinatorial selectors that need to be screened in order to observe alpha values higher than a preset minimum. A string model for enantiorecognition (SMED) formalism is proposed to account for this observation on the basis of an extended Ogston three-point interaction model. Partially overlapping molecular interaction domains are analyzed in terms of a string complementarity model for ligand-receptor complementarity. The results suggest that chiral selection statistics may be interpreted in terms of more general concepts related to biomolecular recognition.
Keywords:chiral recognition  chiral discrimination  receptor affinity distribution (RAD)  string model  SMED  CHIRBASE  chiral statistics  binding statistics
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号