首页 | 本学科首页   官方微博 | 高级检索  
     


Sounding out the hidden data: A concise review of deep learning in photoacoustic imaging
Authors:Anthony DiSpirito  III  Tri Vu  Manojit Pramanik  Junjie Yao
Affiliation:1.Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA; 2.School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore
Abstract:The rapidly evolving field of photoacoustic tomography utilizes endogenous chromophores to extract both functional and structural information from deep within tissues. It is this power to perform precise quantitative measurements in vivo—with endogenous or exogenous contrastthat makes photoacoustic tomography highly promising for clinical translation in functional brain imaging, early cancer detection, real-time surgical guidance, and the visualization of dynamic drug responses. Considering photoacoustic tomography has benefited from numerous engineering innovations, it is of no surprise that many of photoacoustic tomography’s current cutting-edge developments incorporate advances from the equally novel field of artificial intelligence. More specifically, alongside the growth and prevalence of graphical processing unit capabilities within recent years has emerged an offshoot of artificial intelligence known as deep learning. Rooted in the solid foundation of signal processing, deep learning typically utilizes a method of optimization known as gradient descent to minimize a loss function and update model parameters. There are already a number of innovative efforts in photoacoustic tomography utilizing deep learning techniques for a variety of purposes, including resolution enhancement, reconstruction artifact removal, undersampling correction, and improved quantification. Most of these efforts have proven to be highly promising in addressing long-standing technical obstacles where traditional solutions either completely fail or make only incremental progress. This concise review focuses on the history of applied artificial intelligence in photoacoustic tomography, presents recent advances at this multifaceted intersection of fields, and outlines the most exciting advances that will likely propagate into promising future innovations.
Keywords:Photoacoustic tomography   deep learning   convolutional neural networks   artificial intelligence   photoacoustic computed tomography   photoacoustic microscopy
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号