首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Shear stress-induced binding of von willebrand factor to platelets
Institution:2. Molecular Medicine Program, University of Utah School of Medicine, Salt Lake City, UT, United States;3. George E. Wahlen VAMC GRECC, Salt Lake City, UT, United States
Abstract:Shear stress-induced platelet aggregation requires von Willebrand factor (vWF), platelet glycoprotein (GP) Ib, GPIIb-IIIa, Ca2+, and adenosine diphosphate (ADP). Recent reports using vWF labeled with either 125I or fluorescein isothiocyanate (FITC) have demonstrated that in shear-fields, vWF binds to both GPIb and GPHb-IIIa. The sequence of the vWF binding to the two platelet receptors has not been precisely determined in these reports. In this study, a flow cytometry technique using a primary anti-vWF antibody and a secondary FITC IgG antibody was used to measure shear stress-induced vWF binding to platelets. Washed normal platelets suspended at 50,000/μl with purified large VWF multimers were exposed to laminar shear stresses of 15 to 120 dynes/cm2 for 30 sec. At this low platelet count, little or no aggregation occurred in the shear fields. A significant increase in post-shear vWF-positive platelets was consistently observed. Experiments with platelets from normal and severe von Willebrand's disease (vWD) (which lack plasma and platelet α-granule vWF) demonstrated that exogenous vWF predominately contributed to the platelet-vWF binding. Blockade of platelet GPIb with the monoclonal anti-GPIb antibody, 6D1, completely inhibited shear stress-induced platelet-vWF attachment. In contrast, blockade of GPIIb-IIIa with monoclonal anti-GPIIb-IIIa antibodies, 10E5 or c7E3, or with the GPIIb-IIIa-blocking tetrapeptide, RGDS, had little or no inhibitory effect on platelet-vWF binding. These data demonstrate that the binding of vWF to GPIb is likely to be the initial shear-induced platelet-ligand binding event. © 1997 Elsevier Science Ltd
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号