首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Isoflurane and low-level carbon monoxide exposures increase expression of pro-survival miRNA in neonatal mouse heart
Authors:Samantha M Logan  Aakriti Gupta  Aili Wang  Richard J Levy  Kenneth B Storey
Institution:1.Institute of Biochemistry & Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6 Canada ;2.Department of Anesthesiology, Columbia University Medical Center, 622 West 168th Street, New York, NY 10032 USA
Abstract:Anesthetics such as isoflurane are known to cause apoptosis in the developing mammalian brain. However, isoflurane may have protective effects on the heart via relieving ischemia and downregulating genes related to apoptosis. Ischemic preconditioning, e.g. through the use of low levels of carbon monoxide (CO), has promise in preventing ischemia-reperfusion injury and cell death. However, it is still unclear how it either triggers the stress response in neonatal hearts. For this reason, thirty-three microRNAs (miRNAs) known to be differentially expressed following anesthesia and/or ischemic or hypoxic heart damage were investigated in the hearts from neonatal mice exposed to isoflurane or low level of CO, using an air-exposed control group. Only miR-93-5p increased with isoflurane exposure, which may be associated with the suppression of cell death, autophagy, and inflammation. By contrast, twelve miRNAs were differentially expressed in the heart following CO treatment. Many miRNAs previously shown to be responsible for suppressing cell death, autophagy, and myocardial hypertrophy were upregulated (e.g., 125b-3p, 19-3p, and 21a-5p). Finally, some miRNAs (miR-103-3p, miR-1a-3p, miR-199a-1-5p) which have been implicated in regulating energy balance and cardiac contraction were also differentially expressed. Overall, this study demonstrated that CO-mediated miRNA regulation may promote ischemic preconditioning and cardioprotection based on the putative protective roles of the differentially expressed miRNAs explored herein and the consistency of these results with those that have shown positive effects of CO on heart viability following anesthesia and ischemia-reperfusion stress.Supplementary InformationThe online version contains supplementary material available at 10.1007/s12192-021-01199-0.
Keywords:Anesthetic  Apoptosis  MicroRNA  Mus musculus  Oxidative stress  Cardioprotective
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号