首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Coated-wall microreactor for continuous biocatalytic transformations using immobilized enzymes
Authors:Thomsen Malene S  Nidetzky Bernd
Institution:Research Center Applied Biocatalysis, Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, Graz, Austria.
Abstract:Microstructured flow reactors are emerging tools for biocatalytic process development. A compelling design is that of the coated-wall reactor where enzyme is present as a surface layer attached to microchannel walls. However, preparation of a highly active wall biocatalyst remains a problem. Here, a stainless steel microreactor was developed where covalent immobilization of the enzyme in multiple linear flow channels of the reaction plate was supported by a macroporous wash-coat layer of gamma-aluminum oxide. Using surface functionalization with aminopropyl triethoxysilane followed by activation with glutardialdehyde, the thermophilic beta-glycosidase CelB from Pyrococcus furiosus was bound with retention of half of the specific activity of the free enzyme (800 U/mg), yielding a high catalyst loading of about 500 U/mL. This microreactor was employed for the continuous hydrolysis of lactose (100 mM) at 80 degrees C, providing a space-time yield of 500 mg glucose/(mL h) at a stable conversion of > or =70%. The immobilized enzyme displayed a half-life of 15 days under the operational conditions. Due to the absence of hydrophobic solute-material interactions, which limit the scope of microstructures fabricated from poly(dimethylsiloxane) for biocatalytic applications, the new microreactor was fully compatible with the alternate enzyme substrate 2-nitro-phenyl-beta-D-galactoside and the 2-nitro-phenol product resulting from its hydrolysis catalyzed by CelB.
Keywords:Biocatalytic transformation  Enzyme immobilization  Flow microchannel  Microstructured reactor  Surface functionalization
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号