首页 | 本学科首页   官方微博 | 高级检索  
     


Differential effects of meal size and food energy density on feeding entrainment in goldfish
Authors:Sánchez-Vázquez F J  Aranda A  Madrid J A
Affiliation:Department of Physiology & Pharmacology, Faculty of Biology, University of Murcia, Spain. javisan@um.es
Abstract:The synchronizing stimulus, its transduction site, and the afferent pathways responsible for feeding entrainment remain unknown. In fish, the role of the diet in the development of feeding anticipatory activity (FAA) is not well understood and fundamental questions on the mechanisms of feeding entrainment, such as the meal characteristics required to develop FAA, remain unexplored. To test the entraining properties of daily meals with different sizes and energy densities, activity rhythms were studied after a 12-h shift of the feeding cycle in individual goldfish under constant light. In the 1st experiment, the energy content of a control diet (16.7 kJ/g) was diluted by replacing 50% (8.3 kJ/g) or 90% (1.7 kJ/g) of the diet with cellulose. However, the number of days required to stabilize FAA after the shift did not differ statistically between diets. In the 2nd experiment, meal size was modified by reducing the daily feeding ration to 0.5% and 0.1% b.wt.d(-1). In this case, differences in the entraining properties of the two feeding rations appeared because goldfish fed at 0.1% b.wt.d(-1) resynchronized faster than those fed at 0.5% b.wt.d(-1). These results revealed that the dilution of the dietary energy up to 1.7 kJ/g had no significant effect on the entraining properties of the feeding-entrainable oscillator (FEO), whereas the reduction of the meal size to 0.1% b.wt.d(-1) provoked a faster resynchronization after shifting the daily meal cycle. Taken together, these results suggest that gut distension may be involved in feeding entrainment, as a reduction in meal size but not in the amount of dietary energy supplied significantly shortened the time required for resynchronization and highlighted the different synchronizing properties of meal size and energy density as zeitgebers for the FEO.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号