Abstract: | Studies of unidirectional Cl-, Na+, and K+ effluxes were performed on isolated, internally dialyzed squid giant axons. The studies were designed to determine whether the coupled Na/K/Cl co-transporter previously identified as mediating influxes (Russell. 1983. Journal of General Physiology. 81:909-925) could also mediate the reverse fluxes (effluxes). We found that 10 microM bumetanide blocked 7-8 pmol/cm2 X s of Cl- efflux from axons containing ATP, Na+, and K+. However, if any one of these solutes was removed from the internal dialysis fluid, Cl- efflux was reduced by 7-8 pmol/cm2 X s and the remainder was insensitive to bumetanide. About 5 pmol/cm2 X s of Na+ efflux was inhibited by 10 microM bumetanide in the continuous presence of 10(-5) M ouabain and 10(-7) M tetrodotoxin if Cl-, K+, and ATP were all present in the internal dialysis fluid. However, the omission of Cl- or K+ or ATP reduced the Na+ efflux, leaving it bumetanide insensitive. K+ efflux had to be studied under voltage-clamp conditions with the membrane potential held at -90 mV because the dominant pathway for K+ efflux (the delayed rectifier) has a high degree of voltage sensitivity. Under this voltage-clamped condition, 1.8 pmol/cm2 X s of K+ efflux could be inhibited by 10 microM bumetanide. All of these results are consistent with a tightly coupled Na/K/Cl co-transporting efflux mechanism. Furthermore, the requirements for cis-side co-ions and intracellular ATP are exactly like those previously described for the coupled Na/K/Cl influx process. We propose that the same transporter mediates both influx and efflux, hence demonstrating "reversibility," a necessary property for an ion-gradient-driven transport process. |