首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Mast cell beta-tryptase selectively cleaves eotaxin and RANTES and abrogates their eosinophil chemotactic activities
Authors:Pang Linhua  Nie Mei  Corbett Lisa  Sutcliffe Amy  Knox Alan J
Institution:Division of Respiratory Medicine, City Hospital, University of Nottingham, Hucknall Road, Nottingham NG5 1PB, United Kingdom. linhua.pang@nottingham.ac.uk
Abstract:Recent studies have shown that a lack of eosinophils in asthmatic airway smooth muscle (ASM) bundles in contrast to the large number of mast cells is a key feature of asthma. We hypothesized that this is caused by beta-tryptase, the predominant mast cell-specific protease, abrogating the eosinophil chemotactic activities of ASM cell-derived eosinophil chemoattractants such as eotaxin and RANTES. We studied the effect of beta-tryptase on the immunoreactivities of human ASM cell-derived and recombinant eotaxin and other recombinant chemokines that are known to be produced by human ASM cells. We report in this study that purified beta-tryptase markedly reduced the immunoreactivity of human ASM cell-derived and recombinant eotaxin, but had no effect on eotaxin mRNA expression. The effect was mimicked by recombinant human beta-tryptase in the presence of heparin and was reversed by heat inactivation and the protease inhibitor leupeptin, suggesting that the proteolytic activity of tryptase is required. beta-Tryptase also exerted similar effects on recombinant RANTES, but not on the other chemokines and cytokines that were screened. Furthermore, a chemotaxis assay revealed that recombinant eotaxin and RANTES induced eosinophil migration concentration-dependently, which was abrogated by pretreatment of these chemokines with beta-tryptase. Another mast cell protease chymase also markedly reduced the immunoreactivity of eotaxin, but had no effect on RANTES and other chemokines and did not affect the influence of beta-tryptase on RANTES. These findings suggest that mast cell beta-tryptase selectively cleaves ASM-derived eotaxin and RANTES and abrogates their chemotactic activities, thus providing an explanation for the eosinophil paucity in asthmatic ASM bundles.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号