首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Modulation of macrophage infiltration and inflammatory activity by the phosphatase SHP-1 in virus-induced demyelinating disease
Authors:Christophi George P  Hudson Chad A  Panos Michael  Gruber Ross C  Massa Paul T
Institution:Department of Neurology, SUNY Upstate Medical University, Syracuse, New York 13210, USA.
Abstract:The protein tyrosine phosphatase SHP-1 is a crucial negative regulator of cytokine signaling and inflammatory gene expression, both in the immune system and in the central nervous system (CNS). Mice genetically lacking SHP-1 (me/me) display severe inflammatory demyelinating disease following inoculation with the Theiler's murine encephalomyelitis virus (TMEV) compared to infected wild-type mice. Therefore, it became essential to investigate the mechanisms of TMEV-induced inflammation in the CNS of SHP-1-deficient mice. Herein, we show that the expression of several genes relevant to inflammatory demyelination in the CNS of infected me/me mice is elevated compared to that in wild-type mice. Furthermore, SHP-1 deficiency led to an abundant and exclusive increase in the infiltration of high-level-CD45-expressing (CD45hi) CD11b+ Ly-6Chi macrophages into the CNS of me/me mice, in concert with the development of paralysis. Histological analyses of spinal cords revealed the localization of these macrophages to extensive inflammatory demyelinating lesions in infected SHP-1-deficient mice. Sorted populations of CNS-infiltrating macrophages from infected me/me mice showed increased amounts of viral RNA and an enhanced inflammatory profile compared to wild-type macrophages. Importantly, the application of clodronate liposomes effectively depleted splenic and CNS-infiltrating macrophages and significantly delayed the onset of TMEV-induced paralysis. Furthermore, macrophage depletion resulted in lower viral loads and lower levels of inflammatory gene expression and demyelination in the spinal cords of me/me mice. Finally, me/me macrophages were more responsive than wild-type macrophages to chemoattractive stimuli secreted by me/me glial cells, indicating a mechanism for the increased numbers of infiltrating macrophages seen in the CNS of me/me mice. Taken together, these findings demonstrate that infiltrating macrophages in SHP-1-deficient mice play a crucial role in promoting viral replication by providing abundant viral targets and contribute to increased proinflammatory gene expression relevant to the effector mechanisms of macrophage-mediated demyelination.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号