首页 | 本学科首页   官方微博 | 高级检索  
     


Hypoxia increases glutathione redox cycle and protects rat lungs against oxidants
Authors:White, C. W.   Jackson, J. H.   McMurtry, I. F.   Repine, J. E.
Affiliation:Webb-Waring Lung Institute, Department of Pediatrics, Children's Hospital, Denver, Colorado.
Abstract:Preexposure to hypoxia increased survival and lung reduced glutathione-to-oxidized glutathione ratios (GSH/GSSG) and decreased pleural effusions in rats subsequently exposed to continuous hyperoxia. In addition, lungs from hypoxia-preexposed rats developed less acute edematous injury (decreased lung weight gains and lung lavage albumin concentrations) than lungs from normoxia-preexposed rats when isolated and perfused with hydrogen peroxide (H2O2) generated by xanthine oxidase (XO) or glucose oxidase (GO). In contrast, when perfused with elastase or exposed to a hydrostatic left atrial pressure challenge, lungs isolated from hypoxia-preexposed rats developed the same acute edematous injury as lungs from normoxia-preexposed rats. The mechanism by which hypoxia preexposure conferred protection against H2O2 appeared to depend on hexose monophosphate shunt (HMPS)-dependent increases in lung glutathione redox cycle activity. First, before perfusion with GO, lungs from hypoxia-preexposed rats had increased glutathione peroxidase and glucose 6-phosphate dehydrogenase (but not catalase or glutathione reductase) activities compared with lungs from normoxia-preexposed rats. Second, after perfusion with GO, lungs from hypoxia-preexposed rats had increased H2O2 reducing equivalents, as reflected by increased GSH/GSSG and NADPH/NADPH+, compared with lungs from normoxia-preexposed rats. Third, pretreatment of rats with an HMPS inhibitor, (6-aminonicotinamide) or a glutathione reductase inhibitor, [1,3-bis(2-chloroethyl)-1-nitrosourea] prevented hypoxia-conferred protection against H2O2-mediated acute edematous injury in isolated lungs. These findings suggest that increased detoxification of H2O2 by glutathione redox cycle and HMPS-dependent mechanisms contributes to tolerance to hyperoxia and resistance to H2O2 of lungs from hypoxia-preexposed rats.
Keywords:
点击此处可从《Journal of applied physiology》浏览原始摘要信息
点击此处可从《Journal of applied physiology》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号