首页 | 本学科首页   官方微博 | 高级检索  
     


The Diurnal Pattern of Nitrate Uptake and Reduction by Spinach (Spinacia oleracea L.)
Authors:Scaife, Alan   Schloemer, Susanne
Affiliation:Horticulture Research International, Wellesbourne, Warwicks CV35 9EF, UK
Abstract:Spinach plants were grown in bowls of aerated nutrient solutionin a controlled environment chamber for 24 h, and harvestedevery 3·5-5 h to record their growth, nitrate and wateruptake, and plant nitrate concentration. Twelve such experimentsare described, either with a 14/10 h dark/light regime, or continuouslight or darkness. The irradiance was either 110, 320, or 510µmol m-2 s-1 (PPFD). All these regimes began at the endof the light period of a 14/10 h dark/light regime (510 µmolm-2 s-1) lasting approximately 2 weeks. Nitrate uptake rate per g of dry weight of plant continued almostunabated at about 17 µmol h-1 through the initial 14-hdark period, and then fell away sharply if the light was notrestored, but increased slightly when it was. With continuouslight at 510 µmol m-2 s-1, uptake rate rose steadily forthe first 24 h of light, and then fell sharply for about 6 h.Shoot nitrate concentration increased about three-fold in thedark phase, and declined in the light at a rate which was positivelyrelated to the irradiance. Root nitrate concentration was severaltimes higher than that of the shoot: its diurnal change wassmaller (relative to the mean) than that of the shoot. Nitratereduction occurred to a small extent in the dark, and increasedrapidly as soon as the lights came on, to remain at a roughlyconstant rate (related to the irradiance) throughout the lightphase. Dry matter increase in the light was related to irradiance,but with little increase above 320 µmol m-2 s-1. Respiratoryweight loss in the dark was not detectable. Rate of fresh weightincrease was approximately constant throughout light and darkperiods. The results compare quite well with the predictions of a simplesimulation model, based on the pump/leak principle.Copyright1994, 1999 Academic Press Spinacia oleracea, nitrate, uptake, reduction, influx, efflux, diurnal, regulation, model, simulation
Keywords:
本文献已被 Oxford 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号