首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Metabolism of Dichloromethane by the Strict Anaerobe Dehalobacterium formicoaceticum
Authors:Andreas Mgli  Michael Messmer  and Thomas Leisinger
Institution:Andreas Mägli, Michael Messmer, and Thomas Leisinger
Abstract:The metabolism of dichloromethane by Dehalobacterium formicoaceticum in cell suspensions and crude cell extracts was investigated. The organism is a strictly anaerobic gram-positive bacterium that utilizes exclusively dichloromethane as a growth substrate and ferments this compound to formate and acetate in a molar ratio of 2:1. When [13C]dichloromethane was degraded by cell suspensions, formate, the methyl group of acetate, and minor amounts of methanol were labeled, but there was no nuclear magnetic resonance signal corresponding to the carboxyl group of acetate. This finding and previously established carbon and electron balances suggested that dichloromethane was converted to methylene tetrahydrofolate, of which two-thirds was oxidized to formate while one-third gave rise to acetate by incorporation of CO2 from the medium in the acetyl coenzyme A synthase reaction. When crude desalted extracts were incubated in the presence of dichloromethane, tetrahydrofolate, ATP, methyl viologen, and molecular hydrogen, dichloromethane and tetrahydrofolate were consumed, with the concomitant formation of stoichiometric amounts of methylene tetrahydrofolate. The in vitro transfer of the methylene group of dichloromethane onto tetrahydrofolate required substoichiometric amounts of ATP. The reaction was inhibited in a light-reversible fashion by 20 μM propyl iodide, thus suggesting involvement of a Co(I) corrinoid in the anoxic dehalogenation of dichloromethane. D. formicoaceticum exhibited normal growth with 0.8 mM sodium in the medium, and crude extracts contained ATPase activity that was partially inhibited by N,N′-dicyclohexylcarbodiimide and azide. During growth with dichloromethane, the organism thus may conserve energy not only by substrate-level phosphorylation but also by a chemiosmotic mechanism involving a sodium-independent F0F1-type ATP synthase.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号