首页 | 本学科首页   官方微博 | 高级检索  
     


Extracellular matrix and embryonal morphogenesis: role of fibronectin in cell migration
Authors:J L Duband
Affiliation:ENS, laboratoire de physiopathologie du développement du CNRS, Paris, France.
Abstract:The neural crest provides a useful paradigm for cell migration and modulations in cell adhesion during morphogenesis. In the present review, we describe the major findings on the role of the extracellular matrix glycoprotein fibronectin and its corresponding integrin receptor in the locomotory behavior of neural crest cells. In vivo, fibronectin is associated with the migratory routes of neural crest cells and, in some cases, it disappears from the environment of the cells as they stop migrating. In vitro, neural crest cells show a great preference for fibronectin substrates as compared to other matrix molecules. Both in vivo and in vitro, neural crest cell migration can be specifically inhibited by antibodies or peptides that interfere with the binding of fibronectin to its integrin receptor. However, the migratory behavior of neural crest cells cannot result solely from the interaction with fibronectin. Thus, neural crest cells exhibit a particular organization of integrin receptors on their surface and develop a cytoskeletal network which differs from that of non-motile cells. These properties are supposed to permit rapid changes in the shape of cells and to favor a transient adhesion to the substratum. Recent findings have established that different forms of fibronectin may occur, which differ by short sequences along the molecule. The functions of most of these sequences are not known, except for 1 of them which carries a binding site for integrin receptors. We have demonstrated that this site is recognized by neural crest cells and plays a crucial role in their displacement. It is therefore possible that the forms of fibronectin carrying this sequence are not evenly distributed in the embryo, thus allowing migrating neural crest cells to orientate in the embryo. Fibronectin would then not only play a permissive role in embryonic cell motility, but have an instructive function in cell behavior.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号