首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Functional interaction between Cerebratulus lacteus cytolysin A-III and phospholipase A2. Implications for the mechanism of cytolysis
Authors:J W Liu  K M Blumenthal
Institution:Department of Biochemistry and Molecular Biology, University of Cincinnati College of Medicine, Ohio 45267-0522.
Abstract:A study on the interaction between bee venom phospholipase A2 and Cerebratulus lacteus cytolysin A-III, a major hemolysin secreted by this organism has been carried out. The hemolytic activity of A-III in phosphate-buffered saline is increased 5-fold in the presence of phospholipase A2 from bee venom. Dansylphosphatidylethanolamine (DPE) labeled, phosphatidylcholine-containing liposomes and human erythrocyte membranes were employed to study the interaction between these two proteins. In DPE-liposomes, A-III alone had no effect on DPE fluorescence nor did it enhance either the phospholipase A2-dependent fluorescence increase or blue shift in emission maximum, indicating that the cytolysin is not a major phospholipase A2-activator. However, when DPE was incorporated into erythrocyte membranes, A-III alone induced a 40% fluorescence increase and a 5 nm blue shift, implying a transient activation of an endogenous phospholipase A2. Further studies using synthetic lysophosphatidylcholine and free fatty acids demonstrated that the hemolytic activity of A-III is potentiated by free fatty acids, a product of phospholipid degradation catalyzed by phospholipase A2. Together, sublytic concentrations of A-III and nonlytic concentrations of oleic acid cause extensive cell lysis. Subsequent analysis of this phenomenon by gel filtration chromatography, analytical ultracentrifugation, chemical cross-linking, and measurement of 14C]oleic acid binding by the cytolysin demonstrated that binding of oleic acid to A-III causes aggregation of the toxin molecules to a tetrameric form which has a higher alpha-helix content and a greater activity than the monomer.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号