Abstract: | Some of the essential structural requirements for the enzymatic reaction of pure human renin acting on pure human and rat angiotensinogen and on their synthetic tetradecapeptide substrates were investigated. The five carboxy terminal amino acids of synthetic tetradecapeptides played a significant role in substrate recognition and/or hydrolysis by human renin. Kinetic constants Km, Kcat and kcat/Km of the various human renin assays were different according to the substrate used. The presence of either an asparagine or a threonine residue in the S'4 renin subsite did not affect significantly the kinetic constant values. A tyrosine residue, rather than a histidine residue, in the S'3 renin subsite gave the best synthetic substrate studied. When tyrosine residue was present in the S'2 renin subsite an important decrease in kcat was observed. Human angiotensinogen was hydrolysed by human renin with lower Km and kcat values than those measured with human and porcine synthetic substrates, suggesting that the 3-dimensional structure of human angiotensinogen plays a key role in the hydrolysis. This finding was supported by assays performed with rat angiotensinogen, which was cleared by human renin with the same kcat value as rat tetradecapeptide, but with a 49-fold lower Km. Between human and rat angiotensinogen a kcat/Km value of only 2-fold higher has been found in the renin assay using human substrate. |