首页 | 本学科首页   官方微博 | 高级检索  
     


Thermodynamic consequences of burial of polar and non-polar amino acid residues in the protein interior
Authors:Loladze Vakhtang V  Ermolenko Dmitri N  Makhatadze George I
Affiliation:Department of Biochemistry and Molecular Biology, College of Medicine, Penn State University, Hershey, PA 17033-2390, USA.
Abstract:Effects of amino acid substitutions at four fully buried sites of the ubiquitin molecule on the thermodynamic parameters (enthalpy, Gibbs energy) of unfolding were evaluated experimentally using differential scanning calorimetry. The same set of substitutions has been incorporated at each of four sites. These substitutions have been designed to perturb packing (van der Waals) interactions, hydration, and/or hydrogen bonding. From the analysis of the thermodynamic parameters for these ubiquitin variants we conclude that: (i) packing of non-polar groups in the protein interior is favorable and is largely defined by a favorable enthalpy of van der Waals interactions. The removal of one methylene group from the protein interior will destabilize a protein by approximately 5 kJ/mol, and will decrease the enthalpy of a protein by 12 kJ/mol. (ii) Burial of polar groups in the non-polar interior of a protein is highly destabilizing, and the degree of destabilization depends on the relative polarity of this group. For example, burial of Thr side-chain in the non-polar interior will be less destabilizing than burial of Asn side-chain. This decrease in stability is defined by a large enthalpy of dehydration of polar groups upon burial. (iii) The destabilizing effect of dehydration of polar groups upon burial can be compensated if these buried polar groups form hydrogen bonding. The enthalpy of this hydrogen bonding will compensate for the unfavorable dehydration energy and as a result the effect will be energetically neutral or even slightly stabilizing.
Keywords:protein stability   hydration   packing   amino acid substitutions   differential scanning calorimetry
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号