首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Mechanical loading of orthodontic miniscrews - significance and problems: an experimental study
Authors:Claudia Reicheneder  Kurt Rottner  Ivan Bokan  Ronald Mai  Günter Lauer  Gerd Richter  Tomasz Gedrange  Peter Proff
Institution:Department of Orthodontics, University of Regensburg, Regensburg, Germany.
Abstract:Orthodontic miniscrews are exposed to three mechanical loading phases during clinical use: torsional loading upon insertion, flexural loading during anchorage function, and torsional loading upon removal. The aim of this study was to simulate clinical loading conditions for different types of orthodontic miniscrews in vitro to quantify the effects of combined torsional and bending stress. Various orthodontic miniscrew systems (Lomas, Dual-top, Aarhus anchorage, Tomas-pin and T.I.T.A.N.-pin) comprising 10 samples each were subjected to the following loading sequences in vitro: a torsional load corresponding to manual insertion with limited torque; and flexural loading at two different insertion depths. For all screw systems with torsional pre-loading (simulating insertion), subsequent flexural loading (simulating anchorage) yielded permanent deformations of approximately 0.15-0.25 mm, depending on the insertion depth. Since EDX analysis revealed comparable elemental compositions for the different screw systems, the differences in mechanical properties are attributed to screw design. Torsional loading during screw insertion may cause premature mechanical weakening and needs to be minimized. Unless fully inserted, screws show pronounced plastic deformation and hence fracture risk under subsequent flexural loading.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号