首页 | 本学科首页   官方微博 | 高级检索  
     


Comparative analysis of bacterial-origin genes for plant mitochondrial ribosomal proteins
Authors:Bonen Linda  Calixte Sophie
Affiliation:Biology Department, University of Ottawa, Ottawa, Canada. lbonen@science.uottawa.ca
Abstract:Mitochondrial ribosomes contain bacterial-type proteins reflecting their endosymbiotic heritage, and a subset of these genes is retained within the mitochondrion in land plants. Variation in gene location is observed, however, because migration to the nucleus is still an ongoing evolutionary process in plants. To gain insights into adaptation events related to successful gene transfer, we have compiled data for bacterial-origin mitochondrial-type ribosomal protein genes from the completely sequenced Arabidopsis and rice genomes. Approximately 75% of such nuclear-located genes encode amino-terminal extensions relative to their Escherichia coli counterparts, and of that set, only about 30% have introns at (or near) the junction in support of an exon shuffling-type recruitment of upstream expression/targeting signals. We find that genes that were transferred to the nucleus early in eukaryotic evolution have, on average, about twofold higher density of introns within the core ribosomal protein sequences than do those that moved to the nucleus more recently. About 20% of such introns are at positions identical to those in human orthologs, consistent with their ancestral presence. Plant mitochondrial-type ribosomal protein genes have dispersed chromosomal locations in the nucleus, and about 20% of them are present in multiple unlinked copies. This study provides new insights into the evolutionary history of endosymbiotic bacterial-type genes that have been transferred from the mitochondrion to the nucleus.
Keywords:ribosomal protein    mitochondria    introns    evolution    gene transfer    plant    human
本文献已被 PubMed Oxford 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号