首页 | 本学科首页   官方微博 | 高级检索  
     


Genetic analysis of Verticillium wilt resistance in a backcross inbred line population and a meta-analysis of quantitative trait loci for disease resistance in cotton
Authors:Jinfa Zhang  Jiwen Yu  Wenfeng Pei  Xingli Li  Joseph Said  Mingzhou Song  Soum Sanogo
Affiliation:.Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, NM 88003 USA ;.State Key Laboratory of Cotton Biology, Institute of Cotton Research of China, Chinese Academy of Agricultural Science, Anyang, Henan 455000 China ;.Department of Computer Science, New Mexico State University, Las Cruces, NM 88003 USA ;.Department of Entomology, Plant Pathology and Weed Science, New Mexico State University, Las Cruces, NM 88003 USA
Abstract:

Background

Verticillium wilt (VW) and Fusarium wilt (FW), caused by the soil-borne fungi Verticillium dahliae and Fusarium oxysporum f. sp. vasinfectum, respectively, are two most destructive diseases in cotton production worldwide. Root-knot nematodes (Meloidogyne incognita, RKN) and reniform nematodes (Rotylenchulus reniformis, RN) cause the highest yield loss in the U.S. Planting disease resistant cultivars is the most cost effective control method. Numerous studies have reported mapping of quantitative trait loci (QTLs) for disease resistance in cotton; however, very few reliable QTLs were identified for use in genomic research and breeding.

Results

This study first performed a 4-year replicated test of a backcross inbred line (BIL) population for VW resistance, and 10 resistance QTLs were mapped based on a 2895 cM linkage map with 392 SSR markers. The 10 VW QTLs were then placed to a consensus linkage map with other 182 VW QTLs, 75 RKN QTLs, 27 FW QTLs, and 7 RN QTLs reported from 32 publications. A meta-analysis of QTLs identified 28 QTL clusters including 13, 8 and 3 QTL hotspots for resistance to VW, RKN and FW, respectively. The number of QTLs and QTL clusters on chromosomes especially in the A-subgenome was significantly correlated with the number of nucleotide-binding site (NBS) genes, and the distribution of QTLs between homeologous A- and D- subgenome chromosomes was also significantly correlated.

Conclusions

Ten VW resistance QTL identified in a 4-year replicated study have added useful information to the understanding of the genetic basis of VW resistance in cotton. Twenty-eight disease resistance QTL clusters and 24 hotspots identified from a total of 306 QTLs and linked SSR markers provide important information for marker-assisted selection and high resolution mapping of resistance QTLs and genes. The non-overlapping of most resistance QTL hotspots for different diseases indicates that their resistances are controlled by different genes.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1682-2) contains supplementary material, which is available to authorized users.
Keywords:Cotton   Verticillium wilt   Fusarium wilt   Root-knot nematodes   Reniform nematodes   Resistance   Quantitative trait loci   Meta-analysis
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号