首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Lipopolysaccharide and lipoteichoic acid induce different innate immune responses in bovine mammary epithelial cells
Authors:Strandberg Ylva  Gray Christian  Vuocolo Tony  Donaldson Laurelea  Broadway Mary  Tellam Ross
Institution:CSIRO Livestock Industries, Queensland Bioscience Precinct, 306 Carmody Road, St Lucia 4067, QLD, Australia.
Abstract:The objective of the present study was to characterize the innate immune responses induced by in vitro stimulation of bovine primary mammary epithelial cells (bMEC) using gram-negative lipopolysaccharide (LPS) and gram-positive lipoteichoic acid (LTA) bacterial cell wall components. Quantitative real-time PCR (qRT-PCR) was employed to examine the mRNA expression of a panel of 22 cytokines, chemokines, beta-defensins and components of the Toll-Like Receptor signaling pathway. Stimulation of bMEC with LPS for 24h elicited a marked increase in mRNA expression for IL-1beta, IL-8, TNFalpha, CXCL6 and beta-defensin while members of the Toll-Like Receptor pathway, although present, were largely unaffected. Surprisingly, stimulation of these cells with LTA for 24 h did not significantly alter the expression of these genes. A time course of the expression of IL-1beta, IL-8, TNFalpha, CXCL6 and beta-defensin was subsequently performed. The mRNA levels of all genes increased rapidly after stimulation for 2-4 h with both LPS and LTA but only the former treatment resulted in sustained responses. In contrast, the increased gene expression for LTA stimulated cells returned to resting levels after 8-16 h with the exception of beta-defensin, which remained up-regulated. The limited and unsustained cytokine response to LTA may explain why mastitis caused by gram-positive bacteria has greater potential for chronic intra-mammary infection than gram-negative infection. It was concluded that bovine mammary epithelial cells have a strong but differential capacity to mount innate immune responses to bacterial cell wall components.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号