首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Effects of oxidative stress inhibitors, neurotoxins, and ganglioside GM1 on Na+,K+-ATPase activity in PC12 Cells and brain synaptosomes
Authors:I O Zakharova  T V Sokolova  V V Furaev  M P Rychkova  N F Avrova
Institution:(1) Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
Abstract:To elucidate mechanism of ganglioside neuroprotection, it is important to study their metabolic effects, specifically of action on Na+,K+-ATPase. It has been shown that under effect of oxidative stress inductors and neurotoxins an oxidative inactivation of this enzyme takes place in PC12 cells and brain cortex synaptosomes, this inactivation being able to be prevented or decreased by ganglioside GM1. Thus, for instance, 24 h after action of 1 mM H2O2, activity of Na+,K+-ATPase in PC12 cells decreased more than twice. However, in the case of preincubation of the cells with ganglioside GM1 prior to the H2O2 action, this enzyme activity did not differ statistically significantly from control. Ganglioside GM1 also was able to increase statistically significantly the enzyme activity decreased by action on the PC12 cells of amyloid β-peptide (Aβ) causing lesion of neurons in Alzheimer’s disease and of low H2O2 concentrations. Experiments on brain cortex synaptosomes have established that not only antioxidants—α-tocopherol and superoxide dismutase (SOD)—but also ganglioside GM1 prevent the glutamate-produced Na+,K+-ATPase oxidative inactivation. The obtained data agree with a suggestion that the ganglioside neuroprotective effect at action on nerve cells of such toxins as Aβ, glutamate or reactive oxygen species is due to their ability to inhibit the free-radical reactions.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号