Evaluation of steam-treated giant bamboo for production of fermentable sugars |
| |
Authors: | García-Aparicio María Parawira Wilson Van Rensburg Eugéne Diedericks Danie Galbe Mats Rosslander Christian Zacchi Guido Görgens Johann |
| |
Affiliation: | Dept. of Process Engineering, Stellenbosch University, Private Bag X1 Stellenbosch 7602 South Africa. garcia@sun.ac.za |
| |
Abstract: | Giant bamboo plantations are currently being established in the Southern Africa region and can be considered as potential lignocellulosic feedstock for the production of second generation bioethanol. In this study, giant bamboo internodal material was subjected to sulphur dioxide (SO(2)) impregnated steam pretreatment prior to enzymatic hydrolysis. The effect of temperature, residence time, and acidity on the overall sugar recovery and byproduct formation was studied using response surface response technology according to a central composite experimental design (CCD) at a fixed SO(2) concentration of 2.5% (w/w liquid) after impregnation. The results showed that pretreatment conditions with combined severity factor (CSF) values and enzyme dosages greater than 1.72 and 30 FPU/g water insoluble solid, respectively, were required to obtain an efficient glucan digestibility and a good overall glucose recovery. Up to 81.2% of the sugar in the raw material was recovered for a CSF of 2.25. However, considering overall sugar yield and byproducts concentration, the pretreated material obtained with a CSF of 1.62 can be considered as the most appropriate for SSF experiments using a xylose-utilizing yeast. At these conditions, it could be possible to obtain up to 247 L of ethanol per dry ton of giant bamboo considering hexose and pentose sugars fermentation. This amount could be increased up to 292 L of ethanol per dry ton of giant bamboo with the maximum sugar yield obtained (CSF = 2.25) if the microorganism possesses robust fermentative characteristics as well as a high resistance to pretreatment by-products. |
| |
Keywords: | bamboo SO2‐catalyzed steam pretreatment combined severity factor enzymatic hydrolysis bioethanol |
本文献已被 PubMed 等数据库收录! |
|