首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The mechanical role of bark
Authors:Niklas K J
Institution:Section of Plant Biology, Cornell University, Ithaca, New York 14853-5908.
Abstract:The ability of stem bark to resist bending forces was examined by testing in bending segments of Acer saccharum, Fraxinus americana, and Quercus robur branches with and without their bark. For each species, the bark contributed significantly to the ability of stem segments differing in age to resist bending forces, but its contribution was age-dependent and differed among the three species. The importance of the mechanical role of the bark decreased basipetally with increasing age of F. americana and Q. robur stem segments and was superceded by that of the wood for segments ≥ 6 yr old. A. saccharum bark was as mechanically important as the wood for stem segments 7 yr old but was not a significant stiffening agent for younger or older portions of stems. On average, the stiffness of the bark from all three species was 50% that of the wood. However, the geometric contribution to the flexural rigidity of stems made by the bark (i.e., the bark's second moment of area) was sufficiently large to offset its lower stiffness (Young's modulus) relative to that of the wood. A simple model is presented that shows that the bark must be as mechanically important as the wood when its radial thickness equals 32% that of the wood and its stiffness is 50% that of the wood. Based on this model, which is shown to comply with the data from three species purported to have stiff woods, it is evident that the role of the bark cannot be neglected when considering the mechanical behavior of juvenile woody stems subjected to externally applied bending forces.
Keywords:bark  flexural rigidity  phellem  plant biomechanics  tissue stiffness  woody stems
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号