首页 | 本学科首页   官方微博 | 高级检索  
     


Enhancement of apoptosis by nitric oxide released from alpha-phenyl-tert-butyl nitrone under hyperthermic conditions
Authors:Cui Zheng-Guo  Kondo Takashi  Matsumoto Hideki
Affiliation:Department of Radiological Sciences, Faculty of Medicine, Toyama Medical and Pharmaceutical University, Sugitani, Toyama, Japan.
Abstract:The aim of this study was to examine whether a neuroprotector, PBN (alpha-phenyl-tert-butyl nitrone), enhances apoptosis induced by hyperthermia, which generates superoxide (O2-) intracellularly, since the release of nitric oxide (NO) from PBN under oxidative stress has been reported. When human myelomonocytic lymphoma U937 cells were treated with hyperthermia (44 degrees C, 10 min) and PBN, an increase in the concentration of nitrite in the culture medium, and a decrease in the hyperthermia-induced production of O2- was observed. Imaging using a fluorescence dye for intracellular NO, diaminofluorescein-2 diacetate (DAF-2 DA), revealed the formation of NO in the apoptotic cells treated with hyperthermia and PBN combined. Apoptotic endpoints were significantly enhanced by the combined treatment: a decrease in mitochondrial trans-membrane potential, cleavage of Bid, release of cytochrome c, and activation of caspase-8 and -3. An increase in the intracellular Ca2+ concentration ([Ca2+]i), externalization of Fas, and decrease in Hsp70 and phosphorylated HSF1 were observed following the combined treatment. Furthermore, scavengers of NO an d ONOO- significantly inhibited the enhancement of apoptosis, the externalization of Fas and the increase in [Ca2+]i. These results suggest that, (1) NO is released from PBN by hyperthermia, and subsequently reacts with O2- to form ONOO-, (2) NO and ONOO- are involved in the enhancement of apoptosis through Fas-mitochondria-caspase and [Ca2+]i-dependent pathways, and (3) a decrease in Hsp70 and phosphorylated HSF1 also contributed to the enhancement of apoptosis.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号