首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Engineering challenges in high density cell culture systems
Authors:Sadettin S Ozturk
Institution:(1) Bayer Corporation, Biotechnology, 4th and Parker Streets, 94701 Berkeley, CA, USA
Abstract:High density cell culture systems offer the advantage of production of bio-pharmaceuticals in compact bioreactors with high volumetric production rates; however, these systems are difficult to design and operate. First of all, the cells have to be retained in the bioreactor by physical means during perfusion. The design of the cell retention is the key to performance of high density cell culture systems. Oxygenation and media design are also important for maximizing the cell number. In high density perfusion reactors, variable cell density, and hence the metabolic demand, require constant adjustment of perfusion rates. The use of cell specific perfusion rate (CSPR) control provides a constant environment to the cells resulting in consistent production. On-line measurement of cell density and metabolic activities can be used for the estimation of cell densities and the control of CSPR. Issues related to mass transfer and mixing become more important at high cell densities. Due to the difference in mass transfer coefficients for oxygen and CO2, a significant accumulation of dissolved CO2 is experienced with silicone tubing aeration. Also, mixing is observed to decrease at high densities. Base addition, if not properly done, could result in localized cell lysis and poor culture performance. Non-uniform mixing in reactors promotes the heterogeneity of the culture. Cell aggregation results in segregation of the cells within different mixing zones. This paper discusses these issues and makes recommendations for further development of high density cell culture bioreactors.
Keywords:cell culture  process monitoring  oxygenation  CO2 transfer  aggregation  segregation  diffusion  on-line monitoring
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号