首页 | 本学科首页   官方微博 | 高级检索  
     


The role of NMDA receptors in the slow neuronal degeneration of Parkinson's disease
Authors:L. D. Loopuijt  W. J. Schmidt
Affiliation:(1) Department of Neuropharmacology, Med. Naturw. Forschungszentrum, Universität of Tübingen, Ob dem Himmelriech, D-72074 Tübingen, Germany
Abstract:Summary Parkinson's disease is a disorder, in which neurons of various neuronal systems degenerate. Furthermore, in such degenerating neurons, the cytoskeleton seems to be affected. In this respect, Parkinson's disease resembles Alzheimer's disease. Since it has been shown, that elevated levels of intracellular calcium can disrupt the cytoskeleton and that the stimulation of glutamate (NMDA) receptors can cause high intracellular concentrations of calcium, it has been suggested, that the stimulation of glutamate receptors plays a role in the slow degeneration in Alzheimer's and Parkinson's disease. In case of the degeneration of the dopaminergic nigrostriatal system in Parkinson's disease, neurons that contain calcium binding protein appear to be less vulnerable than the neurons that lack it, suggesting that calcium binding protein might protect these neurons from degeneration by preventing that cytosolic calcium concentrations increase excessively. And, since there is in the nigrostriatal system a glutamatergic afferent pathway (the prefrontonigral projection) and since dopaminergic nigrostriatal neurons contain postsynaptic NMDA receptors, glutamatergic excitation may play a role in the degeneration of the nigrostriatal system in Parkinson's disease. If so, it may be possible to protect the neurodegeneration of these dopaminergic neurons by NMDA receptor antagonists.
Keywords:NMDA receptors  Excitotoxicity  Chronic neuronal degeneration  Nigrostriatal neurons  Parkinson's disease
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号