首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Nikkomycin biosynthesis: formation of a 4-electron oxidation product during turnover of NikD with its physiological substrate
Authors:Bruckner Robert C  Zhao Guohua  Venci David  Jorns Marilyn Schuman
Institution:Department of Biochemistry, Drexel University, College of Medicine, Philadelphia, Pennsylvania 19102, USA.
Abstract:Nikkomycins are peptidyl nucleoside antibiotics that act as therapeutic antifungal agents in humans and easily degraded insecticides in agriculture. The nikkomycin peptidyl moiety contains a pyridyl residue derived from L-lysine. The first step in peptidyl biosynthesis is an aminotransferase-catalyzed reaction that converts L-lysine to Delta(1)- or Delta(2)-piperideine-2-carboxylate (P2C). Spectral, chromatographic, and kinetic analyses show that the aerobic reaction of nikD with P2C results in the stoichiometric formation of picolinate, accompanied by the reduction of 2 mol of oxygen to hydrogen peroxide. A high resolution HPLC method, capable of separating picolinate, nicotinate and isonicotinate, was developed and used in product identification. NikD contains 1 mol of covalently bound FAD and exists as a monomer in solution. Reductive and oxidative titrations with dithionite and potassium ferricyanide, respectively, show that FAD is the only redox-active group in nikD. Anaerobic reaction of nikD with 1 mol of P2C results in immediate reduction of enzyme-bound FAD. Because nikD is an obligate 2-electron acceptor, it is proposed that the observed 4-electron oxidation of P2C to picolinate occurs via a mechanism involving two successive nikD-catalyzed 2-electron oxidation steps. In addition to nikkomycins, a nikD-like reaction is implicated in the biosynthesis of an L-lysine-derived pyridyl moiety found in streptogramin group B antibiotics that are used as part of a last resort treatment for severe infections due to gram positive bacteria.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号