首页 | 本学科首页   官方微博 | 高级检索  
   检索      


A role for thyroid hormones in the development of premigratory disposition in redheaded bunting,Emberiza bruniceps
Authors:K Pant  A Chandola-Saklani
Institution:(1) Reproductive and Wildlife Biology Unit, Garhwal University, Post Box 45, 246174 Srinagar, Garhwal, UP, India
Abstract:Excessive fat deposition and zugunruhe (nocturnal restlessness), two characteristics of premigratory disposition, are displayed in caged redheaded buntings. In earlier experiments thyroid ablation was found to inhibit premigratory fattening in this bird. Also, seasonal investigations on thyroid hormonal profiles indicated a distinct rise in circulating tri-iodothyronine just before spring migration, most likely as a result of increased peripheral monodeiodination of thyroxine. The physiological relevance of these findings has been assessed in the present paper. Results indicated that removal of thyroid gland completely prevented development of zugunruhe and fat deposition; replacement therapy with T4 or T3 restored both. Thyroxine-induced fattening in thyroidectomized birds was found to be dose responsive. In two experiments in thyroidectomized and intact birds each suppression of extrathyroidal conversion of thyroxine into triiodothyronine by iopanoic acid completely suppressed zugunruhe and fattening in thyroidectomized as well as intact birds, arguing for a role of triiodothyronine in migratory physiology. Blockage of thyroxine to triiodothyronine conversion, however, did not suppress feather regeneration, indicating that unlike effects on migratory parameters in the same individuals thyroxine-induced feather regeneration does not involve prior monodeiodination to triiodothyronine. Thus, contrary to the prevailing view that triiodothyronine alone is the finally active thyroid hormone (thyroxine being a precursor), both thyroxine and triiodothyronine may have specific roles to play in the physiology of seasonal events, and peripheral conversion of thyroxine to triiodothyronine may be one of the physiological devices to ensure that energetically incompatible events like migration and moulting do not occur simultaneously. Results also indicate that increasing spring daylengths which are known to trigger avian migration may influence peripheral conversion of thyroxine to triiodothyronine possibly imparting to this physiological process an adaptive value in the timing of seasonal events.Abbreviations IOP iopanoic acid - NS normal saline - RIA radioimmunoassay - T4 thyroxine - T3 triiodothyronine - Tx thyroidectomized
Keywords:Thyroxine  Tri-iodothyronine  Zugunruhe  Migratory fattening  Redheaded bunting  Emberiza bruniceps
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号