首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Quantitative changes of plant defense enzymes and phytohormone in biocontrol of cucumber Fusarium wilt by Bacillus subtilis B579
Authors:Fang Chen  Min Wang  Yu Zheng  Jianmei Luo  Xiurong Yang  Xuelian Wang
Institution:1. Key Laboratory of Industrial Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, 300457, Tianjin MD, People’s Republic of China
2. Tianjin Institute of Plant Protection, 300112, Tianjin MD, People’s Republic of China
Abstract:Fusarium oxysporum f. sp. cucumerinum is a destructive pathogen on cucumber (Cucumis sativus L.) seedlings and the causal organism of crown and root rot of cucumber plants. An isolate of B579, which was identified as Bacillus subtilis by 16S rDNA sequences analysis, was selected from 158 bacteria isolates as the best antagonist against F. oxysporum by dual plate assay. The production of chitinase, β-1, 3-glucanase, siderophores, indole-3-acetic acid (IAA), hydrogen cyanide (HCN), and phosphate solubilization, by B579 were screened with the selected medium by in vitro tests. The cell-free culture filtrate of B579, with a concentration of 20% (v/v), could result in the vacuolation, swelling and lysis of hyphae. Besides, it could blacken, shrunk and hindered the germination of conidia of F. oxysporum at the concentration of ≥80% (v/v). When applied as inoculants, B579 (108 c.f.u. ml?1) was able to reduce disease incidence by 73.60%, and promote seedling growth in pot trial studies. The activities of plant defense-related enzyme, peroxidase (POX), polyphenol oxidase (PPO) and phenylalanine ammonia-lyase (PAL) were significantly increased in plants treated with B579. Interestingly, a higher content of IAA, an important plant growth regulator, was detected in B579 treated plants. Furthermore, seed-soaking with B579 exhibited a better biological control effect (Biocontrol effect 73.60%) and plant growth promoting ability (Vigor Index 4,177.53) than root-irrigation (50.88% and 3,575.77, respectively), suggesting the potential use of B579 as a seed-coating agent.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号