首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Long-Term Effects of Adding Nutrients to an Oligotrophic Coastal Environment
Authors:Anna R Armitage  Thomas A Frankovich  James W Fourqurean
Institution:(1) Department of Biological Sciences and Southeast Environmental Research Center, Florida International University, Miami, Florida 33199, USA;(2) Department of Marine Biology, Texas A&M University at Galveston, PO Box 1675, Galveston, Texas 77553, USA;(3) Marine Sciences Program, Department of Biological Sciences and Southeast Environmental Research Center, Florida International University, North Miami, Florida 33181, USA
Abstract:Management of ecological disturbances requires an understanding of the time scale and dynamics of community responses to disturbance events. To characterize long-term seagrass bed responses to nutrient enrichment, we established six study sites in Florida Bay, USA. In 24 plots (0.25 m2) at each site, we regularly added nitrogen (N) and phosphorus (P) in a factorial design for 7 years. Five of the six sites exhibited strong P limitation. Over the first 2 years, P enrichment increased Thalassia testudinum cover in the three most P-limited sites. After 3 years, Halodule wrightii began to colonize many of the P-addition plots, but the degree of colonization was variable among sites, possibly due to differences in the supply of viable propagules. Thalassia increased its allocation to aboveground tissue in response to P enrichment; Halodule increased in total biomass but did not appear to change its aboveground: belowground tissue allocation. Nutrient enrichment did not cause macroalgal or epiphytic overgrowth of the seagrass. Nitrogen retention in the study plots was variable but relatively low, whereas phosphorus retention was very high, often exceeding 100% of the P added as fertilizer over the course of our experiments. Phosphorus retentions exceeding 100% may have been facilitated by increases in Thalassia aboveground biomass, which promoted the settlement of suspended particulate matter containing phosphorus. Our study demonstrated that low-intensity press disturbance events such as phosphorus enrichment can initiate a slow, ramped successional process that may alter community structure over many years.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号