首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Neuronal membrane depolarization and the control of cholinergic muscarinic receptors: selective effect on different neuronal cell types
Authors:Rabi Simantov  Rivka Levy
Institution:Department of Genetics, Weizmann Institute of Science, Rehovot, Israel.
Abstract:1. The possibility that a long-lasting neuronal activation regulates the expression of muscarinic cholinergic receptors was studied with three cultured neuronal cell lines. 2. Continuous depolarization of a subclone of the neuroblastoma-glioma NG108-15 hybrid cells with potassium chloride increased by 45-75% the number of cholinergic muscarinic receptors, monitored with 3H-QNB, whereas a short incubation with KCl for 10 min or 6 hr had no effect. 3. The calcium channel blocker verapamil increased the effect of KCl. 4. Two cell lines, named SC9 and WC5, that originate from the rat brain, also bind 3H-QNB. They were therefore used to test whether the effect of chronic depolarization is universal. Depolarized SC9 and WC5 cells, in the presence or absence of verapamil, did not show an increased 3H-QNB binding. 5. Muscarinic receptors of both SC9 and WC5 cells have a higher affinity to pirenzepine than the M-3 receptor subtype of the neuroblastoma-glioma cells, suggesting therefore that the two rat brain cell lines possess M-1 or M-2 receptors. 6. The physiological significance of this differential role of depolarization on the expression of different muscarinic receptors is discussed in the context of their postreceptor second messengers.
Keywords:Chemical depolarization  ion channels  KC1  receptor plasticity  calcium blockers  up-regulation
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号