首页 | 本学科首页   官方微博 | 高级检索  
     


Preferential solvation of methylmercurated calf thymus deoxyribonucleic acid.
Authors:J C Fu  D W Gruenwedel
Affiliation:Department of Food Science and Technology, University of California, Davis, California 95616 U.S.A.
Abstract:The changes in polymer-solvent interactions that occur when native calf thymus DNA is dialyzed against Na2SO4 solutions of a given ionic strength and buffer concentration but of varying concentrations in methylmercuric hydroxide have been investigated with the help of solution density measurements at 25 °C and pH 6.8–7.0. From measurements executed under equilibrium dialysis conditions at the three salt levels 5 mm, 0.05 m, and 0.5 m Na2SO4 (m refers to molality) and in the presence of 5 mm cacodylic acid buffer, the density increments (???c2)μ0 for native calf thymus DNA were determined as a function of CH3HgOH concentration. (???c2)μ0 was found not to vary with organomercurial concentration, irrespective of the concentration of supporting electrolyte, until a certain CH3HgOH concentration level has been reached, viz., pM1 ? 3.5 (pM1 = ?log mCH3HgOH), beyond which (???c2)μ0 increases strongly with increasing concentration of CH3HgOH. As is shown by optical melting, (???c2)μ0 becomes a function of organomercurial concentration the moment DNA undergoes denaturation brought about by the complexing of CH3HgOH with the various N-binding sites of the base residues in the DNA double helix.Polymer-solvent interactions, expressed in terms of preferential water interactions (“net hydration”) and preferential salt interactions (“salt solvation”), were derived from the (???c2)μ0 data in combination with data obtained on the preferential interaction of CH3HgOH with denatured DNA and data on the partial specific volumes of all major solution components, gathered from density measurements on solutions with fixed concentrations of diffusible components. Evidence is presented which shows that denaturation in general decreases the net hydration while salt becomes preferentially associated with the polyelectrolyte. This process is further amplified by the interaction of CH3HgOH with denatured DNA: Methylmercurated DNA alters the redistribution of diffusible components at dialysis equilibrium to such an extent that in a formal sense large amounts of water are rejected from the immediate vicinity of the polymer. The molecular implications of these findings are explored. The results are further discussed in the light of previous findings where the methylmercury-induced denaturation of DNA had been studied with the help of buoyant density measurements in a Cs2SO4 density gradient and by velocity-sedimentation in a variety of sulfate media.
Keywords:To whom correspondence should be addressed.
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号