首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Nonlinear analysis of EEG signals: Surrogate data analysis
Institution:1. Department of Electrical Engineering, National Institute of Technology, Chathamangalam 673601 Calicut, Kerala, India;2. Clinical Fellow in Movement Disorder, Pacific Parkinson Research Centre, UBC Hospital, M30B 2221 Wesbrook Mall, university of British Colombia, Vancouver BC 6T2B5, Canada
Abstract:ObjectivesThe electroencephalogram (EEG) signal contains information about the state and condition of the brain. The aim of the study is to conduct a nonlinear analysis of the EEG signals and to compare the differences in the nonlinear characteristics of the EEG during normal state and the epileptic state.DataThe EEG data used for this study – which consisted of epileptic EEG and normal EEG – were obtained from the EEG database available with the Bonn University, Germany.ResultsThe attractors seen in normal and epileptic human brain dynamics were studied and compared. Surrogate data analyses were conducted on two nonlinear measures, namely the largest Lyapunov exponent and the correlation dimension, to test the hypothesis whether EEG signals were in accordance with linear stochastic models.DiscussionsThe existence of deterministic chaos in brain activity is confirmed by the existence of a chaotic attractor; also, saturation of the correlation dimension towards a definite value is the manifestation of a deterministic dynamics. Also a reduction is observed between the dimensionalities of the brain attractors from normal state to the epileptic state. The evaluation of the largest Lyapunov exponent also confirms the lowering of complexity during an episode of seizure.ConclusionIn case of Lyapunov exponent of EEG data, the change due to surrogating is small suggesting that it is not representing the system complexity properly but there is a marked change in the case of correlation dimension value due to surrogating.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号