首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Influence of Acute Jugular Vein Compression on the Cerebral Blood Flow Velocity,Pial Artery Pulsation and Width of Subarachnoid Space in Humans
Authors:Andrzej F Frydrychowski  Pawel J Winklewski  Wojciech Guminski
Institution:1. Institute of Human Physiology, Medical University of Gdansk, Gdansk, Poland.; 2. Department of Computer Communications, Gdansk University of Technology, Gdansk, Poland.; Charité University Medicine Berlin, Germany,
Abstract:

Purpose

The aim of this study was to assess the effect of acute bilateral jugular vein compression on: (1) pial artery pulsation (cc-TQ); (2) cerebral blood flow velocity (CBFV); (3) peripheral blood pressure; and (4) possible relations between mentioned parameters.

Methods

Experiments were performed on a group of 32 healthy 19–30 years old male subjects. cc-TQ and the subarachnoid width (sas-TQ) were measured using near-infrared transillumination/backscattering sounding (NIR-T/BSS), CBFV in the left anterior cerebral artery using transcranial Doppler, blood pressure was measured using Finapres, while end-tidal CO2 was measured using medical gas analyser. Bilateral jugular vein compression was achieved with the use of a sphygmomanometer held on the neck of the participant and pumped at the pressure of 40 mmHg, and was performed in the bend-over (BOPT) and swayed to the back (initial) position.

Results

In the first group (n = 10) during BOPT, sas-TQ and pulse pressure (PP) decreased (−17.6% and −17.9%, respectively) and CBFV increased (+35.0%), while cc-TQ did not change (+1.91%). In the second group, in the initial position (n = 22) cc-TQ and CBFV increased (106.6% and 20.1%, respectively), while sas-TQ and PP decreases were not statistically significant (−15.5% and −9.0%, respectively). End-tidal CO2 remained stable during BOPT and venous compression in both groups. Significant interdependence between changes in cc-TQ and PP after bilateral jugular vein compression in the initial position was found (r = −0.74).

Conclusions

Acute bilateral jugular venous insufficiency leads to hyperkinetic cerebral circulation characterised by augmented pial artery pulsation and CBFV and direct transmission of PP into the brain microcirculation. The Windkessel effect with impaired jugular outflow and more likely increased intracranial pressure is described. This study clarifies the potential mechanism linking jugular outflow insufficiency with arterial small vessel cerebral disease.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号