首页 | 本学科首页   官方微博 | 高级检索  
     


The transmembrane domain of syntaxin 1A is critical for cytoplasmic domain protein-protein interactions
Authors:Lewis J L  Dong M  Earles C A  Chapman E R
Affiliation:Department of Physiology, University of Wisconsin, Madison, Wisconsin 53706, USA.
Abstract:Assembly of the plasma membrane proteins syntaxin 1A and SNAP-25 with the vesicle protein synaptobrevin is a critical step in neuronal exocytosis. Syntaxin is anchored to the inner face of presynaptic plasma membrane via a single C-terminal membrane-spanning domain. Here we report that this transmembrane domain plays a critical role in a wide range of syntaxin protein-protein interactions. Truncations or deletions of the membrane-spanning domain reduce synaptotagmin, alpha/beta-SNAP, and synaptobrevin binding. In contrast, deletion of the transmembrane domain potentiates SNAP-25 and rbSec1A/nsec-1/munc18 binding. Normal partner protein binding activity of the isolated cytoplasmic domain could be "rescued" by fusion to the transmembrane segments of synaptobrevin and to a lesser extent, synaptotagmin. However, efficient rescue was not achieved by replacing deleted transmembrane segments with corresponding lengths of other hydrophobic amino acids. Mutations reported to diminish the dimerization of the transmembrane domain of syntaxin did not impair the interaction of full-length syntaxin with other proteins. Finally, we observed that membrane insertion and wild-type interactions with interacting proteins are not correlated. We conclude that the transmembrane domain, via a length-dependent and sequence-specific mechanism, affects the ability of the cytoplasmic domain to engage other proteins.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号