首页 | 本学科首页   官方微博 | 高级检索  
     


Differences in signal transduction between Fc gamma receptors (Fc gamma RII, Fc gamma RIII) and FMLP receptors in neutrophils. Effects of colchicine on pertussis toxin sensitivity and diacylglycerol formation.
Authors:J Reibman  K A Haines  D Gude  G Weissmann
Affiliation:Department of Medicine, New York University Medical Center, NY 10016.
Abstract:Studies on the role of microtubule integrity in stimulus-response coupling in neutrophils have generated contradictory data. To determine the role of microtubule integrity in stimulus-response coupling elicited by two different mechanisms, i.e., engagement of the Fc receptors (FcR gamma II, FcR gamma III) or engagement of the receptor for FMLP, we utilized colchicine (10 microM), which reduces pericentriolar microtubules to 29% of control, and compared its effect with that of nocodazole (50 microM) and lumicolchicine (10 microM). We now demonstrate that treatment of neutrophils with colchicine but not lumicolchicine, inhibits degranulation elicited by engagement of Fc receptors but augments degranulation in response to FMLP. In contrast to the ligand-specific effect of microtubule-disruption on degranulation, superoxide anion production (assembly of the NADPH oxidase) is unaffected by colchicine regardless of the ligand. To determine whether intact microtubules were required for responses elicited by ligation of Fc gamma RII(CD32) or Fc gamma RIII(CD16), mAb directed against these receptors were employed. Treatment of neutrophils with mAb KuFc79 directed against Fc gamma RII(CD32) or mAb 3G8 directed against Fc gamma RIII(CD16) inhibited degranulation of neutrophils elicited by immune complexes (IC). In contrast, removal of most of Fc gamma RIII by phosphatidylinositol-specific phospholipase C did not significantly alter degranulation in response to IC. We conclude that degranulation elicited by IC results from ligation of both Fc gamma RII and phosphatidylinositol-specific phospholipase C-insensitive Fc gamma RIII. The importance of microtubule integrity on the generation of intracellular signals was also examined. Degranulation of neutrophils proceeds via pertussis toxin-sensitive and insensitive pathways; treatment of cells with colchicine did not augment the action of pertussis toxin. Stimulation of neutrophils by chemoattractants results in a biphasic increase in 1,2-sn-diacylglycerol; a rapid increase ("triggering") secondary to the action of a phosphatidylinositol-specific phospholipase C, and a late increase ("activation") secondary to the action of a phosphatidylcholine-specific phospholipase C. Treatment of cells with colchicine altered the production of both [3H]-arachidonic acid-diacylglycerol and diacyl[14C]glycerol in parallel to its effect on degranulation. These studies indicate that the requirement of intact microtubules for degranulation is ligand-specific. Furthermore, assembly of the respiratory burst oxidase does not require intact microtubules. Microtubules most likely alter the cycling of specific receptors or the generation of specific intracellular signals required for stimulus-response coupling in the course of degranulation. Intact microtubules are not uniformly required for the discharge of granule contents during exocytosis.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号