Water Transport across Maize Roots : Simultaneous Measurement of Flows at the Cell and Root Level by Double Pressure Probe Technique |
| |
Authors: | Zhu G L Steudle E |
| |
Affiliation: | Lehrstuhl für Pflanzenökologie, Universität Bayreuth, Universitätsstrasse 30, D-8580 Bayreuth, Federal Republic of Germany |
| |
Abstract: | A double pressure probe technique was used to measure simultaneously water flows and hydraulic parameters of individual cells and of excised roots of young seedlings of maize (Zea mays L.) in osmotic experiments. By following initial flows of water at the cell and root level and by estimating the profiles of driving forces (water potentials) across the root, the hydraulic conductivity of individual cell layers was evaluated. Since the hydraulic conductivity of the cell-to-cell path was determined separately, the hydraulic conductivity of the cell wall material could be evaluated as well (Lpcw = 0.3 to 6.10−9 per meter per second per megapascal). Although, for radial water flow across the cortex and rhizodermis, the apoplasmic path was predominant, the contribution of the hydraulic conductance of the cell-to-cell path to the overall conductance increased significantly from the first layer of the cortex toward the inner layers from 2% to 23%. This change was mainly due to an increase of the hydraulic conductivity of the cell membranes which was Lp = 1.9.10−7 per meter per second per megapascal in the first layer and Lp = 14 to 9.10−7 per meter per second per megapascal in the inner layers of the cortex. The hydraulic conductivity of entire roots depended on whether hydrostatic or osmotic forces were used to induce water flows. Hydrostatic Lpr was 1.2 to 2.3.10−7 per meter per second per megapascal and osmotic Lpr = 1.6 to 2.8.10−8 per meter per second per megapascal. The apparent reflection coefficients of root cells (σs) of nonpermeating solutes (KCI, PEG 6000) decreased from values close to unity in the rhizodermis to about 0.7 to 0.8 in the cortex. In all cases, however, σs was significantly larger than the reflection coefficient of entire roots (σsr). For KCI and PEG 6000, σsr was 0.53 and 0.64, respectively. The results are discussed in terms of a composite membrane model of the root. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|