首页 | 本学科首页   官方微博 | 高级检索  
     


Differential effects of uncharged aminoamide local anesthetics on phospholipid bilayers, as monitored by 1H-NMR measurements
Authors:Fernandes Fraceto Leonardo  Spisni Alberto  Schreier Shirley  de Paula Eneida
Affiliation:Faculdade de Farmácia, Universidade de Sorocaba, SP, Brazil.
Abstract:We have collected evidences of a "transient site" for the local anesthetics (LA) lidocaine, etidocaine, bupivacaine and mepivacaine in sonicated egg phosphatidylcholine (EPC) vesicles. The effects of the uncharged anesthetic species at a fixed LA/EPC ratio inside the bilayer were measured by chemical shifts (C.S.) and longitudinal relaxation times (T(1)) of the lipid hydrogens. Two sort of changes were detected: (I) decrease, indicating specific orientation of the LA aromatic ring (measured as up-field C.S. changes by the short-range ring-current effect) and less rotational freedom (smaller T(1) values) for EPC hydrogens such as the two glycerol-CH(2) and the choline-CH(2) bound to the PO(4-) group, probably due to the nearby presence of the LA; (II) increase, indicating the aromatic ring is now perpendicular to the orientation observed before (causing down-field changes in C.S.) and larger T(1) values for all the choline and glycerol hydrogens, as a result of LA insertion behind these well-organized bilayer regions. The less hydrophobic, linear and nonlinear (lidocaine and mepivacaine, respectively) aminoamide analogs provide similar effects-described in I; their hydrophobic counterparts (etidocaine and bupivacaine) also produced comparable effects (depicted in II). The preferential positioning and orientation of each LA inside the bilayer is then determined by its hydrophobic and steric properties. We propose that this "transient site" in the lipid milieu exists also in biological membranes, where it can modulates the access of the uncharged LA species to its site(s) of action in the voltage-gated sodium channel.
Keywords:
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号