首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The ALP-Enigma Protein ALP-1 Functions in Actin Filament Organization to Promote Muscle Structural Integrity in Caenorhabditis elegans
Authors:Hsiao-Fen Han and  Mary C Beckerle
Institution:University of Utah, Salt Lake City, UT 84112
Abstract:Mutations that affect the Z-disk–associated ALP-Enigma proteins have been linked to human muscular and cardiac diseases. Despite their clear physiological significance for human health, the mechanism of action of ALP-Enigma proteins is largely unknown. In Caenorhabditis elegans, the ALP-Enigma protein family is encoded by a single gene, alp-1; thus C. elegans provides an excellent model to study ALP-Enigma function. Here we present a molecular and genetic analysis of ALP-Enigma function in C. elegans. We show that ALP-1 and α-actinin colocalize at dense bodies where actin filaments are anchored and that the proper localization of ALP-1 at dense bodies is dependent on α-actinin. Our analysis of alp-1 mutants demonstrates that ALP-1 functions to maintain actin filament organization and participates in muscle stabilization during contraction. Reducing α-actinin activity enhances the actin filament phenotype of the alp-1 mutants, suggesting that ALP-1 and α-actinin function in the same cellular process. Like α-actinin, alp-1 also interacts genetically with a connectin/titin family member, ketn-1, to provide mechanical stability for supporting body wall muscle contraction. Taken together, our data demonstrate that ALP-1 and α-actinin function together to stabilize actin filaments and promote muscle structural integrity.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号