首页 | 本学科首页   官方微博 | 高级检索  
     


Inhibition of histone deacetylase 1 or 2 reduces induced cytokine expression in microglia through a protein synthesis independent mechanism
Authors:Benjamin S. Durham  Ronald Grigg  Ian C. Wood
Affiliation:1. School of Biomedical Sciences, University of Leeds, Leeds, UK;2. School of Chemistry, University of Leeds, Leeds, UK
Abstract:Histone deacetylase (HDAC) inhibitors prevent neural cell death in in vivo models of cerebral ischaemia, brain injury and neurodegenerative disease. One mechanism by which HDAC inhibitors may do this is by suppressing the excessive inflammatory response of chronically activated microglia. However, the molecular mechanisms underlying this anti‐inflammatory effect and the specific HDAC responsible are not fully understood. Recent data from in vivo rodent studies have shown that inhibition of class I HDACs suppresses neuroinflammation and is neuroprotective. In our study, we have identified that selective HDAC inhibition with inhibitors apicidin, MS‐275 or MI‐192, or specific knockdown of HDAC1 or 2 using siRNA, suppresses the expression of cytokines interleukin‐6 (IL‐6) and tumour necrosis factor‐alpha (TNF‐α) in BV‐2 murine microglia activated with lipopolysaccharide (LPS). Furthermore, we found that in the absence of HDAC1, HDAC2 is up‐regulated and these increased levels are compensatory, suggesting that these two HDACs have redundancy in regulating the inflammatory response of microglia. Investigating the possible underlying anti‐inflammatory mechanisms suggests an increase in protein expression is not important. Taken together, this study supports the idea that inhibitors selective towards HDAC1 or HDAC2, may be therapeutically useful for targeting neuroinflammation in brain injuries and neurodegenerative disease.
image

Keywords:acetylation  gene expression  HDAC  microglia
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号