首页 | 本学科首页   官方微博 | 高级检索  
     


The calcium-activated potassium channels of turtle hair cells
Abstract:A major factor determining the electrical resonant frequency of turtle cochlear hair cells is the time course of the Ca-activated K current (Art, J. J., and R. Fettiplace. 1987. Journal of Physiology. 385:207- 242). We have examined the notion that this time course is dictated by the K channel kinetics by recording single Ca-activated K channels in inside-out patches from isolated cells. A hair cell's resonant frequency was estimated from its known correlation with the dimensions of the hair bundle. All cells possess BK channels with a similar unit conductance of approximately 320 pS but with different mean open times of 0.25-12 ms. The time constant of relaxation of the average single- channel current at -50 mV in 4 microM Ca varied between cells from 0.4 to 13 ms and was correlated with the hair bundle height. The magnitude and voltage dependence of the time constant agree with the expected behavior of the macroscopic K(Ca) current, whose speed may thus be limited by the channel kinetics. All BK channels had similar sensitivities to Ca which produced half-maximal activation for a concentration of approximately 2 microM at +50 mV and 12 microM at -50 mV. We estimate from the voltage dependence of the whole-cell K(Ca) current that the BK channels may be fully activated at -35 mV by a rise in intracellular Ca to 50 microM. BK channels were occasionally observed to switch between slow and fast gating modes which raises the possibility that the range of kinetics of BK channels observed in different hair cells reflects a common channel protein whose kinetics are regulated by an unidentified intracellular factor. Membrane patches also contained 30 pS SK channels which were approximately 5 times more Ca-sensitive than BK channels at -50 mV. The SK channels may underlie the inhibitory synaptic potential produced in hair cells by efferent stimulation.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号