Abstract: | Interactions of meso-tetra(4-N-methylpyridyl)porphyrin [TMpyP(4)], meso-tetra(2-N-methylpyridyl)porphyrin [TMpyP(2)], and meso-tetra(para-N-trimethylanilinium)porphyrin (TMAP) with several native and synthetic DNAs were studied by a variety of physical techniques: nmr (31P and 1H), absorption spectroscopy, viscosity, and flow dichroism (FD). Of the three porphyrins studied, only the interaction of TMpyP(4) with poly [d(G-C)2] was fully consistent with intercalation. In particular, a large increase in viscosity, a downfield 31P-nmr signal (ca. -1 ppm), and upfield imino proton signals (11 to 12 ppm range) were observed. Comparison of the effects of TMpyP(4) on DNAs of different GC contents revealed larger changes in solution viscosity with increased GC content. However, the characteristic changes in 31P- and 1H-nmr spectra were not observed. The viscosity increases observed in studies with poly[d(A-C)(G-T)] and C. Perf. DNA were much lower than with poly[d(G-C)2], M. Lys. DNA, and calf thymus DNA. Thus, GC sequence and content are clearly important. The principal change in the 31P-nmr signal of native DNA is the appearance of a very broad shoulder centered at ca. -2.0 ppm, which is larger in M. Lys. DNA than in C. Perf. DNA. FD studies indicate highly ordered TMpyP(4) cations arranged perpendicular to the DNA axis of calf thymus DNA. Together, these results suggest the major effects of TMpyP(4) on DNA properties are due to strong GC-binding interactions that influence DNA structure. The data are consistent with combined intercalative and outside binding interactions of TMpyP(4) with GC regions of DNA. In contrast, similar studies with TMAP suggest that it influences AT regions of DNA by an outside binding mode. On the other hand, TMpyP(2) effects on DNA properties are consistent with nonselective outside binding. |