首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Effect of oxygen on photosynthesis and biosynthesis of glycolate in photoheterotrophically grown cells of Rhodospirillum rubrum
Authors:Takabe  Tetsuko; Osmond  C B; Summons  R E; Akazawa  T
Institution:2Research Institute for Biochemical Regulation, School of Agriculture, Nagoya University Chikusa, Nagoya 464, Japan
3Department of Environmental Biology, Research School of Biological Sciences, Australian National University Canberra, Australia
Abstract:Photosynthetic CO2 fixation was studied using cells of Rhodospirillumrubrum grown heterotrophically on malate or butyrate. Ratesof CO2 fixation were higher in the malategrown cells than inthe butyrate-grown bacteria but ribulosebisphosphate (RUP2)carboxylase/oxygenase activities were higher in the extractsprepared from the butyrate-grown bacteria. The photosyntheticCO2 fixation in the butyrate-grown R. rubrum cells was inhibitedby KCN, and the inhibitory effect of O2 on CO2 fixation wasreversed when cells were returned to an N2 atmosphere. In themalate-grown cells, photosynthetic CO2 fixation was insensitiveto KCN and the inhibitory effect exerted by O2 was practicallyirreversible. 14CO2 was not incorporated into glycolate by either malate-or butyrate-grown cells in an N2 atmosphere, but small amountsof labeled glycolate were found in malate- and butyrate-growncells in air or 100% O2. Glycolate excreted by these cells in100% O2 was measured colorimetrically and its identity establishedby mass spectrometry. When the O2 atmosphere was labeled with18O2, only one of the carboxyl oxygens of the excreted glycolatewas labeled, and the enrichment of 18O in this carboxyl oxygenrelative to the 18O2 provided was greater than 80%. These studiesshow that significant glycolate production by R. rubrum onlyoccurs in the presence of O2 and that in both malateand butyrate-growncells, the glycolate so formed is presumably produced via RuP2oxygenase. 1 Paper No. 46 in the series "Structure and Function of ChloroplastProteins", and research supported in part by research grantsfrom the Japanese Ministry of Education (No. 211113), the TorayScience Foundation (Tokyo), and the Nissan Science Foundation(Tokyo). (Received August 19, 1978; )
Keywords:
本文献已被 Oxford 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号