首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Macrophage growth inhibitors derived from the murine peritoneal cavity
Authors:Shing-Erh Yen  Carleton C Stewart
Institution:(1) Section of Cancer Biology, Division of Radiation Oncology, Mallinckrodt Institute of Radiology, Washington University School of Medicine, 63110 St. Louis, Missouri;(2) Division of Immunology, St. Jude Children's Research Hospital, 332 North Lauderdale, P. O. Box 318, 38101 Memphis, TN
Abstract:Summary The murine peritoneal cavity contains factors that inhibit the in vitro growth and colony formation of macrophages. The inhibition of macrophage growth is not due to cell death. In the presence of inhibitors, the growth of colony-forming macrophages is suppressed, and small clusters are formed as a result of limited proliferation. The more mature mono-nuclear phagocytes (blood monocytes and peritoneal exudate macrophages) are more sensitive to the overall inhibitory effect of the peritoneal inhibitors than the less mature bone marrow mononuclear phagocytes. Furthermore, using dialysis and Amicon ultrafiltration, at least two inhibitors with differential inhibitory effects can be demonstrated. The colony formation of bone marrow mononuclear phagocytes is suppressed mainly by a protease-resistant, small molecular weight (<1,000) dialyzable inhibitor. In contrast, peritoneal exudate macrophages are sensitive to both the small molecular weight inhibitor and a protease-sensitive, large molecular weight (>12,000), nondialyzable inhibitor. The data suggest a possible existence of a dual inhibitor control on the proliferation of mononuclear phagocytes in vivo. In addition, the in vitro cultured peritoneal exudate cells are capable of producing inhibitors that mimic the activity of the in vivo inhibitors. This investigation was supported by Grants CA 09 11(SY) and AI15563(CCS) from the National Institutes of Health, Bethesda, MD
Keywords:macrophage  colony formation  inhibitors
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号