首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Role of the VP16-binding domain of vhs in viral growth, host shutoff activity, and pathogenesis
Authors:Strand Stephanie S  Leib David A
Institution:Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, Box 8096, 660 S. Euclid Ave., St. Louis, MO 63110, USA.
Abstract:The virion host shutoff (vhs) protein of herpes simplex virus type 1 causes the degradation of host and viral mRNA immediately upon infection of permissive cells. vhs can interact with VP16 through a 20-amino-acid binding domain, and viruses containing a deletion of this VP16-binding domain of vhs (Delta20) and a corresponding marker rescue (Delta20R) were constructed and characterized. Transient-transfection assays showed that this domain was dispensable for vhs activity. The Delta20 recombinant virus, however, was unable to induce mRNA degradation in the presence of actinomycin D, while degradation induced by Delta20R was equivalent to that for wild-type virus. Delta20, Delta20R, and KOS caused comparable RNA degradation in the absence of actinomycin D. Western blot analysis of infected cells indicated that comparable levels of vhs were expressed by Delta20, Delta20R, and KOS, and there was only a modest reduction of vhs packaging in Delta20. Immunoprecipitation of protein from cells infected with Delta20 and Delta20R showed equivalent coprecipitation of vhs and VP16. Pathogenesis studies with Delta20 showed a significant decrease in replication in the corneas, trigeminal ganglia, and brains, as well as a significant reduction in clinical disease and lethality, but no significant difference in the establishment of, or reactivation from, latency compared to results with KOS and Delta20R. These results suggest that the previously described VP16-binding domain is not required for vhs packaging or for binding to VP16. It is required, however, for RNA degradation activity of tegument-derived vhs and wild-type replication and virulence in mice.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号