首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Zinc Extraction potential of two common crop plants,Nicotiana tabacum and Zea mays
Authors:Wenger  K  Gupta  S K  Furrer  G  Schulin  R
Institution:(1) Department of Renewable Resources, 4–42 Earth Sciences Bldg., University of Alberta, Edmonton, Alberta, Canada, T6G 2E3
Abstract:White spruce Picea glauca (Moench) Voss] seedlings were inoculated with Hebeloma crustuliniforme and treated with 25 mM NaCl to examine the effects of salinized soil and mycorrhizae on root hydraulic conductance and growth. Mycorrhizal seedlings had significantly greater shoot and root dry weights, number of lateral branches and chlorophyll content than non-mycorrhizal seedlings. Salt treatment reduced seedling growth in both non-mycorrhizal and mycorrhizal seedlings. However, needles of salt-treated mycorrhizal seedlings had several-fold higher needle chlorophyll content than that in non-mycorrhizal seedlings treated with salt. Mycorrhizae increased N and P concentrations in seedlings. Na levels in shoots and roots of salt-treated mycorrhizal seedlings were significantly lower and root hydraulic conductance was several-fold higher than in non-mycorrhizal seedlings. A reduction of about 50% in root hydraulic conductance of mycorrhizal seedlings was observed after removal of the fungal hyphal sheath. Transpiration and root respiration rates were reduced by salt treatments in both groups of seedlings compared with the controls, however, both transpiration and respiration rates of salt-treated mycorrhizal seedlings were as high as those in the non-mycorrhizal seedlings that had not been subjected to salt treatment. The reduction of shoot Na uptake while increasing N and P absorption and maintaining high transpiration rates and root hydraulic conductance may be important resistance mechanisms in ectomycorrhizal plants growing in salinized soil.
Keywords:Root hydraulic conductance  root respiration  sodium chloride  transpiration  N  P  K
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号